skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Weijian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the past decades, China has witnessed high air pollution associated with rapid economic development, although regulatory efforts have alleviated the situation since 2013. Haze events characterized by high particulate matter (PM) levels in China are not only of enormous magnitude but also represent a distinct chemical regime. Once driven by direct emissions, these high-PM episodes are now more affected by secondary aerosol, especially secondary organic aerosol (SOA). This Review synthesizes the state of the science of SOA formation in urban China, specifically (i) how the dominance of anthropogenic precursors affects SOA formation, (ii) what are the prevailing SOA formation mechanisms, and (iii) how important are the multipollutant and multiphase processes in SOA formation and evolution. We also highlight essential directions for future studies. 
    more » « less
    Free, publicly-accessible full text available August 28, 2026
  2. Speleothem δ18O records from central southern China have long been regarded as a key benchmark for Asian summer monsoon intensity. However, the similar δ18O minima observed among precession minima and their link to seasonal precipitation mixing remains unclear. Here, we present a 400,000-y record of summer precipitation δ18O from loess microcodium, which captures distinct precession cycles similar to those seen in speleothem δ18O records, particularly during glacial periods. Notably, our microcodium δ18O record reveals very low-δ18O values during precession minima at peak interglacials, a feature absent in speleothem δ18O records from central southern China. This discrepancy suggests that the mixed summer and nonsummer climatic signals substantially influence the speleothem δ18O records from central southern China. Proxy-model comparisons indicate that the lack of very low-δ18O values in speleothem δ18O records is due to an attenuated summer signal contribution, resulting from a lower summer-to-annual precipitation ratio in southern China at strong monsoon intervals. Our findings offer a potential explanation for the long-standing puzzle of the absence of 100- and 41-kyr cycles in speleothem δ18O records and underscore the critical role of seasonality in interpreting paleoclimatic proxies in central southern China. These insights also have broader implications for interpreting speleothem δ18O records globally, advocating for a more multiseason interpretive framework. 
    more » « less
  3. Paired measurements of14C/12C and230Th ages from two Hulu Cave stalagmites complete a precise record of atmospheric14C covering the full range of the14C dating method (~54,000 years). Over the last glacial period, atmospheric14C/12C ranges from values similar to modern values to values 1.70 times higher (42,000 to 39,000 years ago). The latter correspond to14C ages 5200 years less than calibrated ages and correlate with the Laschamp geomagnetic excursion followed by Heinrich Stadial 4. Millennial-scale variations are largely attributable to Earth’s magnetic field changes and in part to climate-related changes in the oceanic carbon cycle. A progressive shift to lower14C/12C values between 25,000 and 11,000 years ago is likely related, in part, to progressively increasing ocean ventilation rates. 
    more » « less